
Journal of Engineering Mathematics 32: 177–194, 1997.
c 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Numerical simulation of separated boundary-layer flow
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Abstract. The numerical simulation of time-dependent, 2-D compressible boundary-layer flow containing a region
of separation is studied. The separation is generated by the introduction of an adverse pressure gradient along the
freestream boundary. In order to validate the numerical method, a low Mach-number laminar separation bubble flow
is considered, which enables an extensive comparison with incompressible results. The generation of an adverse
pressure gradient along the freestream boundary can be realized in various ways. An imposed decelerating flow
boundary is compared with a suction technique. The effects of the strength of the pressure gradient and the presence
of small upstream perturbations on the separation bubble are also investigated. The time-averaged characteristics of
the flow are in good quantitative agreement with incompressible approximate theories predicting the condition for
separation. The appearance of self-excited vortex shedding in unperturbed flows under a sufficiently strong adverse
pressure gradient is consistent with incompressible flow simulations reported in the literature. The satisfactory
result achieved in the calculation of the low-Mach-number flow encourages the application of the numerical method
to flows with strong compressibility effects.
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1. Introduction

Direct Numerical Simulation (DNS) of flows involving separation has become of considerable
interest in recent years. This is strongly motivated by the increasing need to solve practical
fluid dynamics problems frequently occuring in aeronautical and mechanical engineering.
Many complex flows contain regions of separation which are too complex for a rigorous
theoretical analysis, while laboratory experiments often fail to capture important details of the
flow, especially near the wall. Presently, the commonly adopted numerical methods to tackle
such complex flows are based on the Reynolds-averaged Navier–Stokes equations (RaNS) or
on Large-Eddy Simulation (LES). However, the widely used turbulence models for RaNS are
known to be inaccurate if separation occurs; even advanced models such as Reynolds-Stress
Models still require considerable research for separated flows ([1], pp. 261–267). Moreover,
the subgrid models for LES have up to now only been validated for relatively simple flows and
considerable development is necessary to extend systematically the LES method to genuinely
complex flows. Thanks to the fast increase in computer capacity, DNS of quite complex flows
can play a supporting role in raising the physical insight in these flows and to provide the
detailed information which is needed for the validation of turbulence and subgrid models.
Moreover, this approach can also serve as a validation of numerical methods in RaNS and
LES.

In this paper a numerical method for spatial compressible DNS is developed and tested
for flows containing separation regions. While the validity of the method has been assessed
previously for relatively simple flows [2], here it is applied to complex cases of separated
flows in a low Mach-number regime. A low Mach-number is considered in order to compare
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the results with incompressible theory as well as with other numerical studies reported in the
literature [3], [4], [5] and [6]. The separation is invoked by an adverse pressure gradient along
the upper boundary. The pressure gradient is such that the separated time-averaged shear layer
reattaches and forms a laminar separation bubble. The flow may exhibit a strong unsteady
behaviour in the form of vortex shedding.

Intensive theoretical and numerical studies have been made on laminar separation bubbles
in incompressible flows. Semi-empirical methods to predict separation have been proposed by,
among others, Stratford [7] and Thwaites [8]. Dobinga et al. [9] presented a method to predict
the angle between the wall and the dividing streamline at the separation point. Using direct
numerical simulations for incompressible flow, Pauley et al. [5] found that, for relatively weak
adverse pressure gradients, the separated region builds up into a steady separation bubble.
This region grows with increasing adverse pressure gradient, until it reaches a certain critical
value at which unsteady separation sets in, characterized by a regular, self-excited vortex
shedding. Beyond this critical value the length of the time-averaged bubble decreases with
increasing adverse pressure gradient. Furthermore, it was found that the shedding frequency,
nondimensionalized by the edge velocity and the boundary-layer momentum thickness at
separation, is independent of the Reynolds number and the strength of the pressure gradient [5]
and [6]. A criterion for the onset of self-excited vortex shedding was proposed in [5]. The
instability of incompressible flows containing a laminar separation bubble has also been
investigated numerically, among others, by Maucher and Rist [4] and Alam and Sandham [3].
It was found that, if a small amplitude forcing is introduced upstream of the steady bubble,
the separated shear layer strongly amplifies the upstream disturbances. Moreover, a periodic
vortex shedding was observed by Alam and Sandham. Increasing the suction strength up to a
certain critical level, they also observed self-excited vortex shedding, which is in agreement
with Pauley et al. In the present work computations of perturbed and unperturbed flows
at Mach number 0�2 subjected to various pressure gradients are carried out to verify these
findings in low-compressible flows. From this comparison we can appreciate the performance
of the developed numerical method which is essentially different from incompressible flow
solvers. Apart from the differences in the governing equations and the simulation algorithm,
the boundary conditions require a specific treatment, especially along the open boundaries.

In addition to the comparison of the basic flow features, we also investigate the effect of
different boundary conditions on the resulting laminar separation bubble. In many compar-
isons between numerical simulation and experiment, an inviscidly derived suction-blowing
boundary condition is used in the numerical calculation to match the pressure distribution of
the experiment. This method is used for example by Ripley and Pauley [6] to compare their
numerical results with the experiment of Gaster [10]. We could also directly prescribe the nor-
mal velocity provided by the experiment. To appreciate the effect of the different procedures
of defining the freestream boundary condition, we compare three closely related calculations.
In the first calculation, a prescribed pressure distribution is used along the upper boundary. In
the second, we use the time-averaged normal velocity on the upper boundary resulting from
the first calculation to fix the suction. In the third, a normal velocity distribution is fixed along
the upper boundary which is derived from the potential-flow assumption and which matches
the prescribed pressure distribution of the first calculation. Finally, we establish the occurrence
of spontaneous vortex shedding at sufficiently high adverse pressure gradients.

The paper is organized as follows. In Section 2 we outline the numerical method. Section 3
provides a discussion of the simulation results and finally, we summarize our findings in
Section 4.
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2. Numerical method

In this section we present the numerical method to solve the mathematical model of the flow.
We first present the mathematical model, followed by an outline of the discretization method
and a description of the numerical treatment along artificial boundaries.

2.1. GOVERNING EQUATIONS

Unsteady compressible flow over a flat plate is described by the Navier–Stokes equations
which represent conservation of mass, momentum and energy:

@t�+ @j(�uj) = 0;

@t(�ui) + @j(�uiuj) + @ip� @j�ij = 0;

@te+ @j((e+ p)uj)� @j(�ijui � qj) = 0:

(1)

The symbols @t and @j denote the partial differential operators @=@t and @=@xj with respect
to time (t) and spatial coordinate (xj), respectively; � is the density, p the pressure, ui the ith
component of the velocity vector, and e the total energy density which is given by:

e =
p

 � 1
+ 1

2�uiui; (2)

where  denotes the adiabatic gas constant. Moreover, �ij is the stress tensor which is a
function of the dynamic viscosity � and velocity vector u:

�ij =
�(T )

Re
(@jui + @iuj �

2
3�ij@kuk); (3)

where Re = (�1u1�
�)=�(T1) is the reference Reynolds number. The dynamic viscosity �

can be constant or related to the temperature T by Sutherland’s law. Finally, qj is the viscous
heat flux vector, given by

qj = �
�

( � 1)Re PrM1
2@jT; (4)

where Pr is the Prandtl number and M1 is the reference Mach number. The temperature T is
related to the density � and the pressure p by the ideal gas law

T = M 2
1

p

�
: (5)

Throughout we use  = 1�4 and Pr = 0�72. The values of the reference Mach number M1

and the Reynolds number Re are specified for each case separately. The variables have been
made dimensionless by reference scales, i.e. a reference length �� which is taken equal to the
displacement thickness of the inflow boundary-layer, density �1, velocity u1, temperature
T1 and viscosity �(T1). The subscript1 refers to the freestream value.

The initial condition is specified in two steps. In the first step, we take the full similarity solu-
tion to the compressible boundary-layer equations. This implies that, given the compressible
Blasius solution at some streamwise location x1, the solution at a different location x̂1 can be
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Figure 1. Configuration of the computational domain bounded by a solid wall and open ‘artificial’ boundaries.

found straightforwardly, provided we scale the normal coordinate by x̂2 = x2
p
x̂1=x1. Specif-

ically, if & denotes any component of the solution then &(x̂1; (x̂1=x1)
1=2x2) = &(x1; x2).

The normal velocity of the compressible Blasius solution is given by ([11], pp. 36):

u2(x1; x2) =
1

(2x1Re)1=2

�
u1(x1; x2)

Z �

0

~T (s) ds� T (x1; x2)

Z �

0
~u1(s) ds

�
; (6)

where � denotes the so called Blasius characteristic length defined as

� =
�
Re=2x1

�1=2
Z x2

0
�(x1; s) ds (7)

and ~T , ~u1 denote the temperature and streamwise velocity as functions of the similarity
coordinate. In the second step, we scale the similarity solution with the freestream quantities.
These quantities are different from the similarity solution, since we apply a nonzero pressure
gradient along the freestream boundary. The freestream variables relate to each other according
to the isentropic relations.

The flow is simulated in two spatial dimensions and the computational domain is rectangular
with the boundaries as shown in Figure 1, where x1 denotes the streamwise and x2 the normal
direction. A no-slip isothermal boundary condition is imposed at the wall. Specifically, the
velocity components vanish, the wall temperature is prescribed and the pressure is extrapolated
from the interior points consistent with the approximate auxiliary condition @2p = 0.

2.2. DISCRETIZATION METHOD

In this subsection, we outline the fourth order spatial discretization method adopted for the
compressible Navier–Stokes equations. Specifically, the differential form of these equations
can be written in the following conservative formulation:

@tU + @jfj(U) = 0; (8)

where the vector U contains the conserved variables (�; �ui; e)T and fj represents the flux in
thexj-direction, consisting of the inviscid and the viscous contributions. It is important that the
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discretization can also be written in conservative form and dissipation and dispersion errors are
kept to a minimum. Best suited for this purpose are, for instance, spectral methods and high-
order central-difference approximations. Since we perform nonperiodic flow simulations, we
favor a finite-difference approach. In this approach, the convective flux in a point (i; j) can be
written in the following form,

�
@f

@x

�
i;j

=
k=nX
k=�n

wkgi+k;j with gi;j =
k=nX
k=�n

hkfi;j+k (9)

in which we use n = 2. We call wk differencing weights and hk averaging weights.
We can determine the weights by imposing certain requirements on the discretization

scheme. For instance, the requirement that the difference scheme is exact for a given basis
function m(x1) leads to the linear relation

k=2X
k=�2

wkm(x1(i+k)) =
@m

@x1
(x1(i)) (10)

for the differencing weights and the linear relation

k=2X
k=�2

hkm(x1(i+k)) = m(x1(i)) (11)

for the averaging weights, respectively. The basis functions used here are polynomials in x1

when an equidistant grid is used. On a nonequidistant grid, contrary to second-order schemes,
maintaining the conservative property is not trivial. In this case the basis functions are chosen in
such a way that the methods remain conservative if the ratio (x1(i+1)�x1(i))=(x1(i)�x1(i�1))
is independent of i. This leads to

(@1f)i;j =
4
3

(si+1;j � si�1;j)

(x1(i+1) � x1(i�1))
�

1
3

si+2;j � si�2;j

(x1(i+2) � x1(i�2))
(12)

with

si;j =
k=2X
k=�2

hkfi;j+k (13)

and the averaging weights hk read:

h�2 = �
1
8

x2(j) � x2(j�2)

x2(j+2) � x2(j�2)
; h2 = �

1
8

x2(j+2) � x2(j)

x2(j+2) � x2(j�2)
;

h�1 =
1
2

x2(j) � x2(j�1)

x2(j+1) � x2(j�1)
; h1 =

1
2

x2(j+1) � x2(j)

x2(j+1) � x2(j�1)
;

h0 =
5
8
:

(14)

It should be noted that we carried out the differentiation with respect to x1 by differencing
weights in the x1-direction and averaging weights in the x2-direction. This scheme is fourth-
order accurate for smooth grids.
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The weights for the second-order derivatives of the viscous terms are computed anal-
ogously. We treat the second-order derivatives of the viscous terms as the consecutive
application of two first-order derivatives, an ‘inner’ and an ‘outer’ respectively. Each first-
order derivative is approximated by four-point molecules. We calculate the ‘inner’ derivative
@in

1 f in the cell-centres (i + 1
2 ; j +

1
2) by making use of the information on the vertices

[i�1 � � � i+2; j�1 � � � j+2], whereas we compute the ’outer’ derivative @out
1 f in the vertices

(i; j) by using the derivatives @in
1 f in the cell centres [i� 3

2 � � � i+
3
2 ; j �

3
2 � � � j +

3
2 ].

The discretization near the boundaries is performed in the same manner as in the interior
domain by the creation of dummy points outside the boundaries. Dummy variables are obtained
through extrapolation of the interior variables. Second-order and fourth-order extrapolation
polynomials are used for, respectively, the second-order and the fourth-order finite-difference
schemes, except along the freestream boundary where always second-order extrapolation is
employed. Furthermore, no conservation equation needs to be discretized along the wall.
The condition @2p = 0 at the wall is discretized to second-order accurate. These boundary
treatments maintain adequate accuracy in the spatial discretization near the boundaries. A
comparison of this fourth-order discretization scheme and a second-order scheme, which
is derived in similar way, shows that the present method performs better in terms of the
dissipation and dispersion errors [2].

The time integration is performed by an explicit, second-order accurate, compact-storage,
four-stage Runge–Kutta scheme. The grid is uniform in the x1-direction and stretched in the
x2-direction according to x2 = L2Ay=(1 + A � y), where A is a stretching parameter; L2

denotes the height of the domain and 0 6 y 6 1, uniformly distributed. In this way the grid
becomes more dense towards the wall. The value A = 0�35 is found to be appropriate for the
present flow application.

2.3. NUMERICAL TREATMENTS ALONG ARTIFICIAL BOUNDARIES

The artificial boundaries are the inflow, freestream and outflow boundaries. At the inflow
boundary, the temperature and the inflow velocities are prescribed. In addition, we use a
pressure extrapolation from inside the domain, i.e. we approximate @1p = 0. This implies

T = T̂ (x2; t); (15)

ui = ûi(x2; t) for i = 1; 2; (16)

p = b1(x2)p1(x2; t) + b2(x2)p2(x2; t) + b3(x2)p3(x2; t); (17)

where p1; : : : ; p3 are the pressures in the first three interior points adjacent to the inflow
boundary. The coefficients b1; : : : ; b3 vary with x2 in such away that the inflow pressure is
zeroth order extrapolated from the interior pressures at the wall and second order extrapolated
at the freestream part. Further, T̂ and ûi describe the behaviour of the temperature and
the velocity at the boundary. In time-dependent simulations, these consist of a mean-flow
component as described above with small amplitude perturbations following from linear
stability theory added. The condition on p allows the pressure at the inflow to vary in response
to the disturbances originating from the downstream condition.

Near the outflow boundary the flow is relaxed to a steady base flow in a buffer region, which
has a typical length of two to four wave-lengths of the inflow disturbance. Initially, this base
flow is taken equal to the similarity solution near the outflow boundary. After a statistically
stationary state is reached, a time-averaged solution is employed as the base flow. In the buffer
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region the disturbances are reduced to zero directly by multiplication with a specific damping
function. This approach can be described as follows,

U = Uref + �(x1)( ~U � Uref); (18)

where U = (�; �ui; e)
T , Uref is the steady base flow, ~U is the instantaneous solution and � is

a damping function. The damping given in (18) is applied at every stage of the Runge–Kutta
scheme. The damping function is defined as

� =

"
(1� C1x

2
b)

 
1�

1� eC2xb
2

1� eC2

!#C3!4t

with 0 6 C1 < 1; C2 > 0; (19)

where xb is a buffer domain coordinate ranging from 0 to 1, C1, C2 and C3 are tuning
parameters, ! is the circular frequency of the inflow disturbance and 4t is the time step.
The procedure through which this function is developed can be found in [2]. Specifically, the
first factor in the square brackets in (19) increases the damping level along the front part of
the buffer domain when C1 is increased. The second factor, on the other hand, reduces the
fluctuations rapidly to zero within the rear part of the buffer domain. The higher the value of
C2, the more abrupt the reduction will be. By selecting appropriate values ofC1 andC2, we can
control the reduction rate of the disturbances. Numerical experiments lead to 0 6 C1 6 0�1
and 10 6 C2 6 20 being appropriate. The power term is added in order to make the buffer
domain procedure insensitive to the number of time steps per disturbance period. This implies
that the procedure is directly applicable for various grid densities and flow configurations. A
typical value ofC3 used here is around 300. Previously, we showed that this procedure prevents
the upstream reflection of disturbances more effectively and efficiently than the commonly
used method of increasing the viscosity within the buffer domain [2].

Along the upper boundary, the characteristic method is used to define the boundary con-
ditions [12] and [13]. For two-dimensional flows, four characteristic waves are advected with
different speeds. The corresponding wave-amplitude variations �1; : : : ;�4 are defined as

�1 = �1

�
@p

@x2
� �c

@u2

@x2

�
; (20)

�2 = �2

�
c2 @�

@x2
�

@p

@x2

�
; (21)

�3 = �3
@u1

@x2
; (22)

�4 = �4

�
@p

@x2
+ �c

@u2

@x2

�
; (23)

where �i is the velocity at which the corresponding waves are propagating in the x2-direction.
These velocities are given by:

�1 = u2 � c; (24)

�2 = �3 = u2; (25)

�4 = u2 + c; (26)
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where c is the speed of sound:

c2 = p=�: (27)

In order to define completely the four dependent variables along the freestream boundary,
we need to define the amplitude variation of the characteristic waves. In the case of positive
normal velocity there are three outgoing waves (waves 2, 3 and 4) and one incoming (wave 1),
whereas if the normal velocity is negative, we have one outgoing (wave 4) and three incoming
waves (wave 1, 2 and 3), under the assumption that ju2j < c . We calculate the amplitude
variations of the outgoing waves, using information from the interior domain, while we fix
those of the incoming waves by exterior information using the following relations derived
from the one-dimesional Euler equations:

@p

@t
+ 1

2(�4 +�1) = 0; (28)

@u2

@t
+

1
2�c

(�4 � �1) = 0: (29)

If we prescribe a constant pressure distribution along the upper boundary, which implies
@p=@t = 0 in Equation (28), both positive and negative normal velocity regions can occur.

In the region of positive normal velocity the prescribed pressure acts as the external
information to fix the incoming wave, as the amplitude variation of the incoming wave �1 is
related to that of the outgoing�4 by Equation (28). On the other hand, in the region of negative
normal velocity, the nonreflecting principle is used to provide the additional information to
fix the other two incoming waves, which implies that �2 = �3 = 0. The same treatment
is applied if we use a suction and blowing boundary condition. In this case @u2=@t = 0 in
Equation (29) and the prescribed normal velocity acts as the external information instead of
the pressure. In the suction region the prescribed normal velocity is positive and in the blowing
region it is negative.

3. Numerical results

We first present results for a laminar separation-bubble flow induced by prescribing the
pressure distribution along the freestream boundary in Section 3.1. The accuracy of the
results is verified by comparison with well-known empirical theory and numerical findings
in incompressible flow. We carry out analogous calculations, using a corresponding suction
boundary condition, in Section 3.2 to study the effect of different realizations of the freestream
boundary conditions on the development of the separation bubble. The influence of the strength
of the pressure gradient and the presence of imposed upstream disturbances are also studied
in Section 3.3.

3.1. REFERENCE SIMULATION: SEPARATION BY PRESCRIBING THE PRESSURE

The computation is performed on a grid containing 320� 96 cells in the streamwise and the
normal direction, respectively. The height of the domain is 30 and the length of the physical
domain is 330. The inflow boundary is located at x1 = 109 behind the flat-plate leading
edge. The Mach-number is 0�2 and the Reynolds number is 330. These physical parameters
are globally comparable with those used by Pauley et al. (incompressible with Re ranging

engi668.tex; 19/11/1997; 8:05; v.7; p.8



Numerical simulation of separated boundary-layer flow 185

from 400 to 800) and by Alam and Sandham (incompressible with Re = 500). At the inflow
boundary a periodic disturbance is superimposed on the compressible Blasius solution which
has the following form

v = � Real( (x2) exp[i(�x1 � !rt)]); (30)

where � is the wave number, !r the circular frequency, � the disturbance amplitude and  the
complex eigenfunction vector. In the present case of spatial simulations � is complex, whereas
!r is real. The disturbance amplitude � is selected to be 0�001. Using the circular frequency
of 0�0594, we find that the eigenvalue provided by the linear stability theory is given by

� = �r + i�i = 0�1640 + i0�019687; (31)

which is a stable mode. The time development of the dependent variables at a certain point is
followed. A statistically stationary solution is reached when each variable fluctuates around a
nearly constant value. The sampling of data is then carried out over several disturbance periods.
The prescribed pressure distribution along the upper boundary is isentropically related to the
following streamwise velocity distribution:

u1(x1) =

8>>><
>>>:

1 if xin 6 x1 6 xs;

1 + 1
2�u1

�
cos

�
x1 � xs

xe � xs
�

�
� 1

�
if xs 6 x1 6 xe;

1��u1 if xe 6 x1 6 xin + L1;

(32)

where xin = 109�3 denotes the streamwise coordinate of the inflow boundary, xs = 119�3 and
xe = 369�3 are the interval boundaries between which the freestream flow is decelerated, and
L1 = 400 is the length of the computational domain. The larger the velocity drop �u1 the
higher the adverse pressure gradient will be. Varying this parameter, we found that�u1 = 0�10
corresponds to an almost separated flow. In the following, we present the result for�u1 = 0�12,
which does lead separation. Figure 2a shows the resulting time-averaged separation bubble,
while the prescribed pressure distribution is shown in Figure 2b along with the time-averaged
wall pressure distribution. The maximum height of the separation bubble is 1�2 with the
height at location x1 defined as the value of x2 at which f(x1; x2) �

R x2
0 �u1 dx02 = 0. This

maximum height is only 20% larger than �� at the inflow boundary. Hence, the prescribed
pressure gradient can be classified as weak. The center of the recirculation region, which is
defined as the position (x1; x2) where f(x1; x2) is minimal, is located near the reattachment
point. The wall pressure distribution deviates notably from the prescribed distribution at
the upper boundary. Proceeding downstream in the separation region, we observe that the
pressure gradient decreases until the center of the recirculation region is reached, behind
which it strongly increases right up to the reattachment point. This strong compression near
the reattachment region is also observed by Pauley et al. and by Gaster [10].

To verify the separation point condition, we compare our result with some semi-empirical
relations.Here, these relations are described in a non-dimensional form. Stratford [7] predicted
that separation can be expected if

S(x1) = Cp

�
x1

dCp

dx1

�2

= 0�0104; (33)
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Figure 2. (a) Streamlines of time-averaged bubble
due to prescribed pressure, Re = 330 and M = 0�2.
(b) Pressure distribution, prescribed along the upper
boundary (dashed) and along the wall (solid).

Figure 3. Streamwise variation of skin friction (solid)
and Stratford criterion (dashed-dotted).

where

Cp = 2(p� ps)=(�u
2
s): (34)

The subsript s denotes the location where the adverse pressure gradient starts, equal to xs
in Equation (32). Our result agrees very well with this prediction, as can be seen in the
development of the skin-friction cf which is plotted in Figure 3 along with the value of the
Stratford criterion. The value of this criterion based on our result is 0�0101 at the location where
cf = 0. We note that the quantities used in calculating the Stratford criterion are averaged
over the boundary-layer thickness, since the pressure varies accross the boundary layer. The
minimum skin-friction corresponds to the center of the recirculation region. Another method
of separation prediction is proposed by Thwaites [8], who found that the value of

m = Re
�
�2@ue
@x1

�
sep
; (35)

at separation is approximately �0�082, where ue denotes the local freestream velocity, �
the momentum thickness of the boundary layer and the subscript sep the separation point.
The corresponding value in the present calculation is in the range �0�103 < m < �0�065,
depending on the exact definition of the edge velocity ue in the simulation. This is consistent
with values found by Pauley et al. (�0�121 < m < �0�076) and by Curle and Skan (�0�171 <
m < �0�068) reported in [14]. The slope of the dividing streamline at the separation point is
verified against the prediction of Dobinga et al. [9]. According to this prediction, the angle
between the wall and the dividing streamline is in the range of 0�0588� to 0�0784�. The
present result provides a separation angle of 0�0662�, which is within the empirical range.
We scrutinize the sensitivity of the result for the grid density by using 64 grid points in
the normal direction. We find that the resulting maximum deviations in the boundary-layer
integral parameters �� and � are 1�2% and 2%, respectively and, in the maximum height of
the separation bubble, 3%.

Next, we check upstream influences of the buffer domain by varying its length. These
influences are small, as is illustrated in the development of the disturbance amplitude calculated
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with three different buffer lengths in Figure 4a. The results within the domain of interest remain
the same. Note that the vertical axis represents the logarithm of the disturbance amplitude.
From this figure we observe that the disturbance amplitude is initially damped, which is
consistent with the imposed stable mode. The disturbance mode, however, becomes unstable
when @1p at the wall grows, since this gives rise to an inflection point in the streamwise
velocity profile [15]. The increase of the disturbance amplitude ends near the recirculation
center and the amplitude remains nearly constant further downstream. The corresponding
growth rate, which is defined as the derivative of the logarithm of the disturbance amplitude
with respect to the streamwise coordinate, is compared with the numerical results of two linear
perturbation theories in Figure 4b: linear stability theory (LST) and the linear parabolized
stability equations (PSE) (detailed descriptions can be found in [15] and [16], respectively).
LST predicts the development of small disturbances in a parallel flow, while PSE can also
be used for a nonparallel flow. The prediction of these theories is only valid as long as
the disturbances are sufficiently small. As can be seen in Figure 4b, the growth rate of the
disturbances from the present calculation agrees well with predictions from LST and PSE
up to the beginning of the separation region. Beyond this point the deviation becomes larger
as the disturbances increase. From the similarity of the results obtained with LST and PSE,
we conclude that the observed deviation is caused by nonlinear effects downstream of the
separation point, especially at the position of maximum reverse flow (minimum skin-friction),
rather than by the locally parallel assumption of LST. Although we only show the amplitude
and the growth rate of the streamwise velocity component, those of the other components
behave similarly. The separation region thus acts as an amplifier of the upstream disturbances
as suggested by Gaster [10] and Rist and Maucher [4]. We observe, however, that the rate
of the amplification strongly decreases behind the center of the time-averaged recirculation
region, which is caused by a fast decrease in the strength of the reverse flow. Observing the
vortical structure of the flow as shown in Figure 5, we note that periodic vortex shedding
occurs near the reattachment region. The shedded vortices are further advected downstream
with almost constant thickness at a speed of approximately 40% of the reference velocity. Note
that the vortices are damped in the buffer domain. The nearly constant thickness of the vortices
corresponds with the almost constant amplitude of disturbances behind the location of vortex
shedding. This vortex shedding thus marks a break-down of the laminar boundary layer. By
recording the time-oscillation of the dependent variables, we find that the circular shedding
frequency is 0�052753, which differs only 0�2% from the imposed perturbation frequency.
This suggests that the vortex shedding is directly induced by the Tollmien–Schlichting waves
imposed at the inflow boundary.

3.2. EFFECT OF DIFFERENT REALISATIONS OF THE FREESTREAM CONDITION

To appreciate the influence of different realizations of the freestream boundary conditions
in generating separation, we perform two additional calculations closely corresponding to
the case described above, but now using a suction technique. Only the employed freestream
boundary conditions are different, the other physical and geometrical parameters remain the
same. This suction technique implies that the normal velocity along the upper boundary is
prescribed and the other dependent variables are calculated with the characteristic method, as
described in Section 2. In the comparison, the previous calculation, which uses the prescribed
pressure, is denoted as case A, while the calculations that use the suction technique are denoted
as case B and case C. In case B the time-averaged normal velocity along the upper boundary
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Figure 4. (a) Disturbance amplitude in response of the
separation bubble flow calculated with three different
buffer lengths normalized by its inflow value. (b) Cor-
responding growth rate compared with LST (circles)
and PSE (dashed).

Figure 5. Development of vorticity starting at t =
603�133 with time interval 26�4.

Figure 6. 2-D channel potential flow configuration
comparable to a flat-plate viscous flow subjected to
suction.

Figure 7. Mean freestream normal velocities (a) and
mean wall-pressure distributions (b) corresponding to
case A (solid), case B (dashed-dotted) and case C
(dashed).

resulting from case A is used as the suction. In case C we derive the suction by assuming
incompressible potential flow through a 2D nonuniform channel, as illustrated in Figure 6.
The normal velocity along the upper wall defines the suction. The lower wall of this channel
is shaped according to the time-averaged displacement thickness �1 of case A, in order to take
the presence of the boundary layer into account. The channel width A varies according to the
streamwise variation of the pressure �p which is assumed to be constant across the channel
width. This pressure distribution �p is obtained from the mean pressure of case A averaged in
the normal direction. We start the derivation of the suction by defining the velocity q along
streamlines which corresponds to the pressure distribution �p(x1) using the incompressible
Bernoulli equation,

q = (1 + 2(p1 � �p(x1)))
1=2; (36)
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where p1 = �1M�2 is the undisturbed pressure in the far field. In case A, the maximum
normal velocity is small compared to the freestream velocity (� 3�5%). Therefore, we approx-
imate the streamwise velocity of the channel flow by its streamline velocity U1(x1) � q(x1).
Recalling that this streamwise velocity is approximately independent of the normal coordinate
and using the continuity equation, we find that

U1(x1)A(x1) = U0A0; (37)

where the subscript 0 corresponds to a reference streamwise location. Taking the inflow
boundary as this reference point, we relate the channel widthA(x1) to the streamwise velocity
U1(x1) according to,

A(x1) =
U0

U1(x1)
A0: (38)

We takeA0 = 29, which is different from the height of the computational domain in the DNS
in order to take the displacement thickness of the boundary-layer into account. In a potential
flow, the slope of the streamline along the wall follows the slope of the wall. Hence,

U2(x1) = U1(x1)
d

dx1
(A(x1) + �1(x1)); (39)

where �1(x1) is the displacement thickness distribution of the boundary-layer in case A and
U2(x1) the normal velocity along the upper wall. This normal velocity defines the suction
along the upper boundary in case C. The time-averaged normal velocity resulting from case A,
which is used as the suction in case B, and the prescribed suction in case C are quite similar,
as shown in Figure 7a.

The time-averaged quantities resulting from case A and case B are almost the same, whereas
the discrepancy between case C and the other two cases is in general only very small up to
the separation point, but becomes more pronounced further downstream. This is illustrated
for example by the wall pressure and the skin friction of the mean flow in Figure 7b and
Figure 8a, respectively. The lines corresponding to case A and case B cannot be distinguished.
As case B and case C employ the same suction technique, the slightly larger suction near the
reattachment point in case C is the main reason for the deviation in the pressure downstream
of the reattachment point. A similar behaviour is also observed in the skin-friction of the time-
averaged flows. Due to the larger suction, case C provides a lower minimum skin-friction,
representing a stronger reverse flow, and a longer separation region.

The disturbance amplitude in case A is also the same as in case B as shown in Figure 8b.
As a consequence of the larger separation region and stronger reverse flow in case C, its
disturbance amplitude is slightly higher than in the other cases in the region of separation and
further downstream.

From these results we conclude that flows subjected to the pressure boundary condition
and the suction boundary condition are equivalent if the freestream pressure in the first case
and the freestream normal velocity in the latter case exactly correspond. The difference in the
time dependence of the freestream variables (in case A the freestream pressure is steady, while
in case B the normal velocity is steady) has apparently a negligible influence. Performing the
same comparison for a higher pressure gradient, we found that the equivalence of the two
boundary conditions is independent of the pressure gradient.
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Figure 8. Skin friction (a) and disturbance ampli-
tude (b) for case A (solid), case B (dashed-dotted) and
case C (dashed).

Figure 9. (a) Prescribed freestream normal velocity
in case B2 (dashed) and case B (solid). (b) Boundary
of separation bubble resulting from case B (solid). B0

(dotted), B2 (dashed) and B20 (dashed-dotted).

3.3. EFFECT OF PRESSURE GRADIENT AND UPSTREAM DISTURBANCES

In this subsection we investigate the effect of the pressure gradient along the upper boundary
on perturbed and unperturbed flows. Therefore, we repeat case B, but without imposing any
disturbances, further referred to as case B0, representing an unpertubed flow under a weak
adverse pressure gradient. In addition, we perform perturbed (case B2) and unperturbed
flow (case B20) simulations subjected to a stronger adverse pressure gradient realized by a
relatively large suction. The suction in case B2, which is also used in case B20, corresponds
to a decelerating freestream flow as described by Equation (32) with �u1 = 0�16. Apart
from these modifications, the physical flow parameters and the flow configuration are kept the
same.

We compute the unperturbed flows, case B0 and case B20, by removing the imposed
disturbances at the inflow boundary. The suction used in cases B2 and B20 is compared to the
freestream normal velocity prescribed in the cases B and B0 in Figure 9a. The time-averaged
separation bubbles resulting from the cases B, B0, B2 and B20 are represented in Figure 9b and
the corresponding skin-friction distributions are given in Figure 10. We recall that the length
of the region of negative skin-friction represents the length of the separation bubble, while the
minimum value of the skin-friction represents the strength of the reverse flow. The comparison
shows that a stronger adverse pressure gradient results in a higher separation bubble and a
stronger reverse flow independent of whether the flow is perturbed or unperturbed. We note
that the reattachment point in case B20 is quite close to the beginning of the buffer domain.
In order to study the influence of the position of the buffer domain on the basic separation
process, we repeated the calculation of case B20 with a different length of the physical domain.
This has virtually no influence on the reattachment point. We observed, that the domain of
noticeable upstream influence of the buffer is about 30 dimensionless units and is hence
strongly localized.
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Figure 10. Skin friction resulting from case B (solid),
B0 (dotted), B2 (dashed) and B20 (dashed-dotted).

Figure 11. Record of the streamwise velocity in the
statistically stationary state near the wall at x1 = 430
in case B2 (a) and in case B20 (b).

Figure 12. (a) Forced vortex shedding in case B2.
(b) Self-excited vortex shedding in case B20.

Figure 13. (a) Spectrum of disturbances in case B2
(solid) and case B20 (dashed). The dashed-dotted line
corresponds to the wave number of the imposed dis-
turbances in the perturbed flow. (b) u1 component dis-
turbance amplitude in case B (solid), case B2 (dashed)
and case B20 (dashed-dotted).

Under the same pressure gradient, the location of the separation point is not affected
by the presence of upstream disturbances. However, the unperturbed flows generate longer
separation regions and weaker reverse flows than the corresponding perturbed flows. This
effect of upstream disturbances is also observed in the incompressible flow simulation of
Alam and Sandham. From the present results we note that this upstream perturbation effect
is stronger with increasing adverse pressure gradient. We also observe that the recirculation
centres of the perturbed flows are located near the reattachment point, while those of the
unperturbed flows are near the middle of the separation region.

In case B0 the absence of imposed disturbances results in the disappearance of vortex-
shedding such as observed in case B and the instantaneous flow has the same steady character
as the time-averaged flow, whereas under the larger suction in case B20 it gives rise to the
occurrence of self-excited vortex shedding. While in case B2 the vortex shedding is periodic
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in time, the shedding in case B20 is irregular. This is illustrated in Figure 11 in which the
time development of the streamwise velocity near the wall at x1 = 430 is shown. The
shedded vortices in case B2 (forced vortex shedding) are stronger than those in case B20

(self-excited) as can be seen in Figure 12. Moreover, the vortex shedding in case B2 occurs
earlier than in case B20. The spatial wave number of the disturbances resulting from case
B2 and case B20 is plotted in Figure 13a. The observed three peaks in case B2 correspond,
for increasing wave numbers, to the disturbances further downstream of the vortex shedding
location, upstream of it and at the location of vortex shedding. In case B20 the spectrum shows
only one dominant wave number which corresponds to the disturbances downstream of the
self-excited vortex shedding. The multiple peaks in the spatial wave number in case B2 implies
that the propagation velocity of the disturbances is location dependent, since we found that the
temporal wave number of the disturbances is independent of location. The lowest propagation
velocity is at the location of vortex shedding.

The breakdown of the perturbed laminar shear layer under strong suction (case B2) occurs
earlier than under weaker suction (case B), as can be seen in the streamwise velocity distur-
bance amplitude in Figure 13b. This figure also confirms the earlier breakdown of the perturbed
shear layer (case B2), in the form of vortex shedding, compared to the unperturbed one (case
B20). The disturbance amplitudes of other components behave similarly. The different level
in the disturbance amplitude in case B2 and case B20 corresponds to the observed disturbance
drop upstream of the reattachment region. Focusing on the region downstream of the inflow
boundary in case B20, we find that the perturbations oscillate with nearly uniform wavelength.
This observation, in combination with the disturbance spectrum and the disturbance ampli-
tude development, suggests that the origin of the self-exciting vortex shedding in case B20 is
formed by Tollmien–Schlichting waves. The waves are naturally generated from the existing
numerical noise in the flow and their amplitude is enhanced by the strong adverse pressure
gradient.

A parameter characterizing the vortex shedding is the so-called Strouhal number, which
is defined as the shedding frequency non-dimensionalized by the boundary-layer momentum
thickness and the local freestream velocity at the separation point:

St� = f(�=ue)sep; (40)

where f denotes the shedding frequency. Pauley et al. [5] suggested that the Strouhal number
is independent of Reynolds number and the pressure gradient. The Strouhal numbers deduced
from case B2 and B20 are 0�00672 and 0�00756, respectively. From this we conclude that the
presence of small upstream disturbances can affect the Strouhal number, even if the Reynolds
number and the pressure gradient are the same.

4. Conclusion

In this paper, a new accurate numerical method is presented that is suitable for DNS of
compressible flows involving separation and turbulence.

The results of a low Mach-number laminar separation bubble flow agree well with
incompressible-flow results. The condition at the separation point is quantitatively consis-
tent with approximate theories and the features of the flow subjected to different adverse
pressure gradients confirm the incompressible results reported in the literature. Specifical-
ly, under a weak adverse pressure gradient an unperturbed laminar separation bubble flow
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exhibits a steady character, while under a strong adverse pressure gradient it is steady up to
the reattachment point, after which a strongly unsteady behaviour in the form of self-excited
vortex shedding is found. Under a weak adverse pressure gradient, an unperturbed shear
layer exhibits no breakdown. Based on these agreements, we conclude that the compressible-
simulation method performs satisfactorily.

We further explore the physical features of the flow, focusing on the effect of different
freestream boundary conditions, the magnitude of the adverse pressure gradient and the pres-
ence of small upstream disturbances. We investigate two different realizations of a freestream
adverse pressure gradient: precribing the pressure and using suction. The time-averaged results
which we derived by using the two boundary conditions are the same if the prescribed pressure
corresponds exactly with the prescribed normal velocity. This equivalence is independent of
the pressure gradient. The potential-flow assumption produces a normal velocity comparable
to the normal velocity resulting from the DNS. The results in other quantities are qualitatively
the same.

An increase of the adverse pressure gradient results in an earlier occurrence of separation
and shear-layer breakdown, a higher separation-bubble, a stronger reverse flow and a larger
disturbance amplitude.

If small perturbations are imposed at the inflow boundary, vortex shedding occurs at the
end of the separation region for both low and high pressure gradients. The resulting time-
averaged bubble is shorter than without small perturbations. The difference in length depends
on the applied adverse pressure gradient. Furthermore, under the same adverse pressure
gradient forced vortex shedding (perturbed) occurs earlier than self-excited (unperturbed)
vortex shedding and the shedded vortices in the first case are stronger. Upstream disturbances
also affect the Strouhal number, which is a parameter for the shedding frequency.

We are now investigating an extension of the numerical method to a supersonic laminar
separation-bubble flow containing multiple, self-excited, oscillating shocks. The results of this
study will be published in the near future.
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